29
Lug
Por ejemplo, proporciona información sobre los clientes que ayuda a las empresas a crear campañas de marketing más sólidas y publicidad dirigida para aumentar las ventas de productos. Ayuda a gestionar los riesgos financieros, detectar transacciones fraudulentas y prevenir averías de equipos en plantas de fabricación y otros entornos industriales. Ayuda a bloquear los ataques cibernéticos y otras amenazas de seguridad en los sistemas de TI. Predice resultados futuros utilizando datos pasados y diversos enfoques, como la minería de datos, el modelado estadístico y el aprendizaje automático. El análisis predictivo utiliza las tendencias de los datos para detectar peligros y oportunidades para las empresas. La data science, por así decir, proporciona esos recursos a la inteligencia artificial.
El proceso de la ciencia de datos se refiere a las acciones y técnicas de los científicos para analizar y comprender datos, extraer conclusiones y resolver problemas. Dependiendo de la cuestión de que se trate y de los objetivos del estudio, los procesos precisos que intervienen en el proceso de la ciencia de datos pueden cambiar. Para realizar https://psicocode.com/miscelanea/curso-ciencia-datos-tripleten/ estas tareas, los científicos de datos deben tener más conocimientos de ciencia informática y ciencias puras que un analista de negocio o analista de datos típico. El científico de datos también debe comprender los conceptos específicos del negocio, como la fabricación de automóviles, el comercio electrónico o la atención sanitaria.
La importancia de un científico de datos[editar]
Esta carrera en UTEC, primera de su tipo en el Perú, te llevará a dominar la relación entre las matemáticas, la estadística y la computación. Con tus conocimientos en análisis y procesamiento de datos, podrás ser el líder de los nuevos retos que el mundo afronta. Dada curso de ciencia de datos la pronunciada curva de aprendizaje en la ciencia de datos, muchas empresas buscan acelerar el retorno de inversión en proyectos de IA. A menudo tienen dificultades para contratar el talento necesario para aprovechar todo el potencial del proyecto de ciencia de datos.
Se puede decir que el estadístico estadounidense John Wilder Tukey fue precursor de la ciencia de datos en los años sesenta, haciendo énfasis en la importancia de analizar datos en lugar de ensayar en modelos estadísticos. Si bien el resultado más típico de business intelligence es algún tipo de
informe o panel de control que le proporciona información a una persona para
que tome la mejor decisión, data science produce decisiones y acciones que se
pueden ejecutar directamente. Data science aprovecha tanto estos enfoques como el aprendizaje automático en
relación con datos estructurados y no estructurados para investigar las
relaciones y descubrir los resultados posibles o las mejores acciones. Business intelligence aprovecha las estadísticas y las herramientas de
visualización en relación con datos estructurados tradicionales para describir
y presentar las tendencias actuales e históricas de una manera fácil de
asimilar y comprender. Si bien la ciencia de datos tiene aplicaciones de negocio importantes, su
espectro es más amplio y sus tácticas son más diversas que
business intelligence.
Tecnologías, técnicas y métodos de ciencia de datos
En este tipo de análisis, la importancia de la Ciencia de Datos es que evalúa distintas estrategias para lograr objetivos específicos. Es decir, la misma tecnología ofrece distintos caminos que puede tomar la empresa respecto a una necesidad y les presenta la predicción de los resultados que generaría cada camino. Por lo tanto, las estadísticas y las matemáticas son importantes para extraer conocimientos de los datos de forma más exacta y sofisticada. Como lo comentamos anteriormente en qué es la ciencia de datos, esta tecnología agrupa e integra tres herramientas principales, las cuales ayudan y facilitan los resultados esperados de la Ciencia de Datos.
- La empresa puede innovar para obtener una mejor solución y ver un aumento significativo en la satisfacción del cliente.
- Utiliza datos para comprender lo que ha sucedido antes para conformar un procedimiento que seguir.
- Es decir, no solo se queda en la parte de almacenar datos o en el proceso de ordenarlos, sino que trabaja en el ciclo de vida de los datos de forma completa hasta el punto de que la data sea explotada para un fin específico.